

SHUTDOWN · TURNAROUND · OUTAGES Best Management Practices

Key Principles for Successful Shutdown Maintenance Planning

R. D. (Doc) Palmer, PE, MBA, CMRP

Maintenance Planning and Scheduling Handbook

Richard Palmer and Associates

© 2007 Eventure Events. All rights reserved.

Key Principles for Successful Shutdown Maintenance Planning

- Introduction to Effective Planning and Scheduling
 - Benefits of planning and scheduling
 - Additional requirements beyond
 - Principles of planning
 - Principles of scheduling
 - Considering reactive work

Key Principles for Successful Shutdown Maintenance Planning

- Moving from Weekly Maintenance
 to Outage Maintenance
 - Accuracy of task estimates
 - Cycle of improvement, the outage report
 - Controlling scope
 - Short notice outages versus planned turnarounds

Key Principles for Successful Shutdown Maintenance Planning

- Organizing and Executing Shutdowns
 - Outage organizing
 - CMMS benefits and cautions
 - Pre-outage, during-outage, and post-outage tasks
 - Defining outage success

SHUTDOWN · TURNAROUND · OUTAGES Best Management Practices

Introduction to Effective Planning and Scheduling

© 2007 Eventure Events. All rights reserved.

Benefits of planning and scheduling

Consider P&S for non-outage maintenance

- It's not about parts and tools
- It's not about using a computer
- It is about getting more work done
- Why do we plan?
 - To increase productivity right answer
 - To provide job packages wrong answer

Benefits of planning and scheduling

- Tradesperson "wrench time" commonly thought to be "80% or so"
- Actual industry avg between 25% & 35%
- Improving from 35% up to 55% wrench time is a 57% improvement (55/35)
- 30 mechanics X 1.57 = 47 mechanics (17 free)
- (Improving from 25% up to 50% would <u>double</u> workforce; 30 free mechanics)

Benefits of planning and scheduling

- 1 planner can plan for 20 to 30 tradespersons
- Value of 1 planner = 17 tradespersons
- Industry rule of thumb: \$1 invested in proper maintenance = \$10 plant profit
- Value of 1 planner=170 tradespersons?

- There is money involved

Additional requirements beyond planning and scheduling

- Workforce focus on quality
- Leadership/communication/teamwork
- Storeroom/tools/shops
- PM/PdM/project work
- Skilled workforce including supervision
- Proper work processes

Essence of planning and scheduling

- Planning supports improving individual jobs repeated over time: a cycle of improvement for each job
- Planning supports advance scheduling by identifying craft skills and labor hours
- Scheduling sets goals to assign a sufficient amount of work

Six principles of PLANNING

- 1. Planners separate from crews
- 2. Focus on **future work**, not chasing parts on current work
- 3. History files at component level
- 4. Use planner skill to estimate labor hours
- 5. Plans recognize skill of tradespersons
- 6. Recognition of wrench time issue

Six principles of SCHEDULING

- 1. Need job plans with craft skills and labor hours
- 2. Credible priority system in use
- 3. Forecast crew labor availability for week
- 4. "Schedule" 100% available labor hours
- 5. (Crew leader handles daily schedule)
- 6. Measure weekly schedule success

Must consider REACTIVE work

- It's "okay" to break the schedule
- Reactive work
 - Don't make crews wait
 - Plan differently: Peek at job and history file; plan scope, skills, and hours
- Emergency work (Unit is down)
 - It's "okay" to chase parts

Success in routine maintenance

sto2007

SHUTDOWN · TURNAROUND · OUTAGES Best Management Practices

Moving from Weekly Maintenance to Outage Maintenance

© 2007 Eventure Events. All rights reserved.

Accuracy of task estimates

- +/- 100% for individual tasks
- +/- 5% to 10% for aggregates of tasks
- Application:
 - We can use estimates to control work
 - Don't get excited about a single task
 - Look for overall progress in areas

Cycle of improvement

- We repeat maintenance over time
- We repeat outages over time
- Application:
 - Improve time estimates and quality of individual jobs and outages over time
 - Must have files and good record keeping
 - It's "okay" if "this" outage is not perfect

- Good library
- Outage notebook and outage checklist
- Evolve shutdown and startup checklists
- Hold critique after outage including managers and tradespersons
- Each project manager within outage must write a report following "project closeout outline"

Project closeout reports

- Title and description
- Work order #
- Project mgr
- Start date and substantial completion date
- Punch list completion date
- Contractor and subcontractor
- Purchase order # and issue date

- Project closeout reports (continued)
 - Final project cost
 - Warranty end date
 - 4 copies O&M manuals delivered to maintenance planning dept including
 - Copy of approved submittals (cut sheets)
 - Table of contents
 - Lubrication and PM recommendations
 - Spare parts list
 - Correct size 3 ring binder

- Project closeout reports (continued)
 - Inventory
 - Request to planning dept to add new
 - Request to planning dept to delete obsolete
 - Drawings
 - New drawings hard copy and electronic with equip #'s, meaningful titles, and "as-built"
 - Revisions to existing drawings clearly marked for draftsman to understand

- Project closeout reports (continued)
 - CMMS (Computer Maint Mgt Syst)
 - Obtained new equipment #'s
 - Submitted list of obsolete #'s
 - Training
 - Conducted for Maint and Opns as necessary
 - Submitted any operational procedure changes to Opns
 - List of any special tools used

- Why? To limit scope creep
- Need cut off dates for adding scope
- Need process for adding scope

- Know why we are doing this outage
 - To make a successful investment right
 - Tradition or To get it done wrong
- Is outage needed?
- Equipment problems including wear
 - Don't just fix symptoms every outage, solve root causes
- New technology

- Have a strategy for outages overall
- Plan knowing strategy
 - Large outage every 5 years or
 - Component outage every 2-3 years (HP/IP, LP)
- Do as much as possible outside the outage
 - Yet consider ease of clearing equipment for work
- Publish 1 year and 10 year outage plans
 - Update monthly

Controlling scope: Outage plans

One Year Outage Plan for June 2006 (by season)

Changes

None since last month

New outages

None since last month

Fall 2006 outages

NS 2	TURBINE UPRATE	(10/25/06 – 12/19/06)
------	----------------	-----------------------

NS CT 6 MAJOR OUTAGE/TURBINE WHEEL REPLACEMENT (09/15/06 -12/15/06)

Spring 2007 outages

- NS CT 5 HOT GAS PASS INSPECTION/TURBINE WHEEL REPLACEMENT (ROW 1-3) (02/17/07 - 05/11/07)
- PP 1 INSTALL NOX TIE INS BLR/BFP TURBINE VALVES (02/24/07 04/02/07)
- NS 1 INSPECTION/REPAIRS (4 WEEKS SPRING 2007)
- KS CT 7 COMBUSTION INSPECTION (10 DAYS SPRING 2007)
- NS 3 GENERATOR REWIND (11 WEEKS BEGINNING IN MARCH 2007)

Controlling scope: Outage plans

Ten Year Outage Plan for June 2006 (by unit)

Changes

The fall 2008 NS2 outage has been cancelled The spring 2010 KS CT3 outage has been lengthened from 7 to 8 weeks

New outages

None since last month

Outages

PP1 INSTALL NOx TIE INS BLR/BFP TURBINE VALVES (02/24/07 – 04/02/07) BOILER/FGD (02/25/08 – 04/03/08)

NS 1 INSPECTION/REPAIRS (4 WEEKS SPRING 2007) INSPECTION/REPAIRS (4 WEEKS SPRING 2008) INSPECTION/REPAIRS (4 WEEKS SPRING 2009)

NS 3 GENERATOR REWIND (11 WEEKS BEGINNING IN MARCH 2007) MAJOR OUTAGE (4 WEEKS FALL 2010) Doc Palmer MAJOR OUTAGE (4 WEEKS FALL 2015)

- Start 1¹/₂ to 2 years before the outage
- Review previous outage reports for what you might expect this time
- PdM (predictive maint) group must share info
- Conduct meetings (inclg tradespersons) and make "discovery" lists
- Republish lists with increasing freq as start date approaches
- Communicate with everyone, sideways
 + up and down + inside and outside

- A lot of discovery work added too late will wreck an outage
 - Prevent: Reduce with PdM; Anticipate from history
- Adding discovery work
 - Watch for impact items; items that affect funding, resources, schedule
 - Have review process; who will pay?
 - Don't sweat little stuff

• Have component outages

- Easier to defer discovered work
- Less financial burden, spread out costs
 - \$3-5 million every 1-2 years instead of \$15-20 million every 5 years
- Allows focusing resources
- Less overwhelming

Avoid "routine" rebuilds which introduce infant mortality

Rebuilding equipment in Figure A at Point X may result in Figure C instead of Figure B

- Routine PM (preventive maintenance)
 - Issued well in advance into backlog
 - Planner review for material and contractor needs
 - State "(During Outage)" in title as well as use outage codes
 - Prioritize as "Must", "Prefer", "If time"

- Learn to say "No"
- Shutdown manager needs authority
- Scope freeze time
- Need organizational discipline (leadership)

• Use a work breakdown structure

- Defines scope and deliverables
- Gives visibility

Doc Palmer

<u>Short notice outages versus</u> planned turnarounds

- Identify work as requiring an outage
- Plan outage work expediently
- Pay close attention to parts needed
- Take advantage & do as much work as possible outside planned turnarounds
- Be able to find outage work that can be done within constraints of the SNO

SHUTDOWN · TURNAROUND · OUTAGES Best Management Practices

Organizing and Executing Shutdowns

© 2007 Eventure Events. All rights reserved.

- Shutdown manager
 - Comprehend technology of the outage
 - Good record keeping
 - Awareness; manage by wandering around
 - Full time for large outages 6 months to a year before start
 - Agreement with sponsor, authority: what, when, who

Outage organization elements

- Need defined and known processes
 - Budgeting, trend program
 - Stores (inventory), tools
 - Purchasing regarding services, labor, material, receiving, laydown
 - Insulation, scaffolding
 - Safety, certification, reporting, work permits, clearances, lockout-tagout, confined space
 - Configuration mgt, design change notification, project closeouts, as-builts

- Know that you have the resources to do the outage!
 - Funds, Time (before and during)
 - Crafts, welders, engineers, project mgrs, etc.
 - Tools, cranes, fork lifts, etc.
 - Vendors, contractors
- Avoid dumb overtime that exceeds fatigue limit

• Budgeting

- Need a budget
- May need a multi-year budget through different fiscal years
- Funding timing
- Anticipate some unknowns

Cost control

- Need tool fairly accurate and timely
- May have to stop some work or raise budget
- Understand cost reports when controlling project: committed, encumbered, expensed
- Trend program

Contractors

- Understand any need to contract
- Contractors need to be familiar with the way you do business
- Contract for *known* circumstances
- Settle on *unknown* circumstances encountered
- Budget for *anticipated* circumstances

Computerized maintenance

Benefits

- Standardize work processes
- Find work orders and parts
 - Identify any outage work with Unit Condition field code (e.g. 2 = requires unit outage)
 - Identify all work orders for this outage with Outage ID field code (e.g. N03 Spring Outage 2007)
- Assign work order #'s to all projects; add assigned lead name to each
- Information for metrics and reports

• Helps history; see past work orders

Computerized maintenance

Cautions

- If you don't know how to do it without a computer, a computer will not help
- Faulty processes / distraction
- Improper costing
- System reliability and speed
- User friendliness
- Cost of system

Executing the shutdown Schedules

- Pre-outage schedule
 - Tracking to see all
- During-outage schedule
 - Detailed or non-detailed (milestones or flags) okay
- After-outage tasks

Executing the shutdown Pre-Outage

- Start planning this turnaround after the last one on this unit
- Budget, prepare to order long lead time items
- Investigate lead times, could be 18 months
- Research vendors and availability, consider other companies and spares

Executing the shutdown Pre-Outage

- Set aside (kit) parts to insure on hand
- Make sure **special tools** are ready
- Contractors need to mobilize; space, laydown, trailers
- Be ready to clear equipment for work in sensible order
- Communicate with everyone, sideways + up and down + inside and outside

Executing the shutdown Pre-Outage

Start outage on time! Need organizational discipline

- Can manage to milestones instead of a "weekly" schedule
- Regular, short project meetings
- Persons don't resent going to; have opportunity to share
- Note milestones (or flags) or collect % complete per work breakdown structure as appropriate.

- Beware the "90% done" syndrome
- Beware Parkinson's Law (work expands to fill available time)
- Finish outage backlog and do other maintenance work if time left
- Finish outage early if appropriate; but don't kill self

- Crew supervisors do daily or shift schedules and coordinate work
- Outage planners can chase parts (Unit is down). May need an expediter
- Communicate with everyone, sideways + up and down + inside and outside

- Outage not over until unit is reliably operating
- Include start up time as part of the outage schedule
 - Especially with new equipment

Executing the shutdown After-Outage

- Closeouts
- Critique, lessons learned
- Rate the outage, score numbers
 - e.g. include planned vs unplanned hours and forced outages within 30 days
- Keep in history

Success in outages

- Outage objective met; completed scope of work intended; was good investment
- Completed *on* schedule
- Completed on budget
- Good safety, environmental, legal performance
- Not overwhelmed by surprises
- Good startup; reliable unit performance

Success in outages

- This outage was better than the last
- Work identified for next outage
- Other information gathered to help next outage and finally
- Outage personnel are still friends

Question time

Doc Palmer

SHUTDOWN · TURNAROUND · OUTAGES Best Management Practices

Doc Palmer

Maintenance Planning and Scheduling Handbook

www.palmerplanning.com

docpalmer@palmerplanning.com

© 2007 Eventure Events. All rights reserved.